A human embryonic stem cell–based model reveals the cell of origin of FOXR2-activated CNS neuroblastoma

Author:

Royston Hitomi N12ORCID,Hampton Autumn B2,Bhagat Dhruv2,Pinto Evonne F2,Emerson Miriam D2,Funato Kosuke12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Georgia , Athens, Georgia , USA

2. Center for Molecular Medicine, University of Georgia , Athens, Georgia , USA

Abstract

Abstract Background FOXR2-activated central nervous system (CNS) neuroblastoma (CNS NB-FOXR2) is a recently identified subtype of brain tumor characterized by the elevated expression of the transcription factor FOXR2 mainly due to genomic rearrangements. However, the precise pathogenic mechanisms, including the cell type of origin, remain elusive. Methods A gene expression analysis of patient tumors was performed to identify putative cell types of origin. Based on this prediction, a new human embryonic stem cell–based model was developed to validate the origin and to examine the molecular and cellular mechanisms underlying the formation of CNS NB-FOXR2. Results Our data showed that CNS NB-FOXR2 tumors express a high level of lineage marker genes associated with the medial ganglionic eminence (MGE), a transient structure located in the developing ventral forebrain. Our model confirmed the cell-type-specific effect of FOXR2 on the proliferation and in vivo tumorigenicity. Additionally, we found that FOXR2 overexpression activated the MEK/ERK signaling pathway through a suppression of the endogenous RAS inhibitor DIRAS3. The MEK inhibitor trametinib suppressed the proliferation of FOXR2-expressing MGE progenitors more than nonexpressing cells. Conclusions Our study collectively demonstrates that MGE progenitors are the cell of origin of CNS NB-FOXR2 and that FOXR2 activates the MEK/ERK signaling pathway, providing a potential therapeutic target.

Funder

University of Georgia Office of Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3