An update on central nervous system tumors in germline replication-repair deficiency syndromes

Author:

Das Anirban123ORCID,Ercan Ayse Bahar123ORCID,Tabori Uri123ORCID

Affiliation:

1. Division of Haematology Oncology, The Hospital for Sick Children , Toronto, Ontario , Canada

2. Arthur and Sonia Labatt Brain Tumor Research Center, SickKids Research Institute , Toronto, Ontario , Canada

3. Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada

Abstract

Abstract DNA replication-repair deficiency (RRD) arises from pathogenic variants in the mismatch repair and/or polymerase-proofreading genes. Multiple germline cancer predisposition syndromes in children and young adults, including constitutional mismatch repair deficiency (CMMRD), Lynch, polymerase-proofreading deficiency, and rare digenic syndromes can lead to RRD cancers. The most frequent brain tumors in these children are high-grade gliomas. Embryonal tumors like medulloblastoma have also been described. Lower-grade tumors are reported from cancer surveillance initiatives. The latter has an extremely high rate of malignant transformation. Novel functional assays quantifying the genomic microsatellite indel load have been demonstrated to be highly sensitive and specific for the diagnosis of RRD cancers and children with germline CMMRD. Importantly, RRD brain tumors uniformly harbor high mutation and microsatellite burden. High T-cell infiltration makes these aggressive cancers amenable to immune checkpoint inhibition, irrespective of their germline genetic background. Synergistic combinations are reported to be successful in patients failing checkpoint inhibitor monotherapy. Future directions include the development of innovative approaches to improve immune surveillance for RRD brain cancers. Additionally, the use of novel tools including circulating tumor DNA and quantifying microsatellite indel load over time can be useful to monitor disease burden and treatment responses in patients.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3