Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion

Author:

Kihira Shingo1ORCID,Tsankova Nadejda M2,Bauer Adam3,Sakai Yu1,Mahmoudi Keon1,Zubizarreta Nicole4,Houldsworth Jane2,Khan Fahad2,Salamon Noriko5,Hormigo Adilia2,Nael Kambiz15

Affiliation:

1. Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

2. Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

3. Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, California, USA

4. Institute for Health Care Delivery Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA

5. Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA

Abstract

Abstract Background Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma. Methods In this retrospective study, patients were included if they (1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53, and PTEN status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed. Results From a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (P < .05) increased predictive performance for IDH1, MGMT, and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT), and 75% (EGFR). Conclusion Addition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma.

Funder

NCI Cancer Center Support

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3