On optimal temozolomide scheduling for slowly growing glioblastomas

Author:

Segura-Collar Berta12ORCID,Jiménez-Sánchez Juan34ORCID,Gargini Ricardo12ORCID,Dragoj Miodrag5ORCID,Sepúlveda-Sánchez Juan M2ORCID,Pešić Milica5ORCID,Ramírez María A1,Ayala-Hernández Luis E346,Sánchez-Gómez Pilar1ORCID,Pérez-García Víctor M34ORCID

Affiliation:

1. Neurooncology Unit, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII) , Madrid 28220 , Spain

2. Instituto de Investigaciones Biomédicas I+12 , Hosp. 12 de Octubre, Madrid 28041 , Spain

3. Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Edificio Politécnico , Avda. Camilo José Cela 3. 13071 Ciudad Real , Spain

4. Institute of Applied Mathematics in Science and Engineering (IMACI), Castilla-La Mancha University , Spain

5. Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade , Despota Stefana 142, 11060 Belgrade , Serbia

6. Departamento de Ciencias Exactas y Tecnología Centro Universitario de los Lagos, Universidad de Guadalajara , Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47460, Jalisco , Mexico

Abstract

Abstract Background Temozolomide (TMZ) is an oral alkylating agent active against gliomas with a favorable toxicity profile. It is part of the standard of care in the management of glioblastoma (GBM), and is commonly used in low-grade gliomas (LGG). In-silico mathematical models can potentially be used to personalize treatments and to accelerate the discovery of optimal drug delivery schemes. Methods Agent-based mathematical models fed with either mouse or patient data were developed for the in-silico studies. The experimental test beds used to confirm the results were: mouse glioma models obtained by retroviral expression of EGFR-wt/EGFR-vIII in primary progenitors from p16/p19 ko mice and grown in-vitro and in-vivo in orthotopic allografts, and human GBM U251 cells immobilized in alginate microfibers. The patient data used to parametrize the model were obtained from the TCGA/TCIA databases and the TOG clinical study. Results Slow-growth “virtual” murine GBMs benefited from increasing TMZ dose separation in-silico. In line with the simulation results, improved survival, reduced toxicity, lower expression of resistance factors, and reduction of the tumor mesenchymal component were observed in experimental models subject to long-cycle treatment, particularly in slowly growing tumors. Tissue analysis after long-cycle TMZ treatments revealed epigenetically driven changes in tumor phenotype, which could explain the reduction in GBM growth speed. In-silico trials provided support for implementation methods in human patients. Conclusions In-silico simulations, in-vitro and in-vivo studies show that TMZ administration schedules with increased time between doses may reduce toxicity, delay the appearance of resistances and lead to survival benefits mediated by changes in the tumor phenotype in slowly-growing GBMs.

Funder

James S. McDonnell Foundation

Ministry of Education, Science and Technology

Ministerio de Ciencia e Innovación

Universidad de Castilla-La Mancha

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3