Irradiation of Nf1 mutant mouse models of spinal plexiform neurofibromas drives pathologic progression and decreases survival

Author:

Laurent Danny1,Smith Abbi E2,Bessler Waylan K2,Mendonca Marc3,Chin-Sinex Helen3,Descovich Martina1,Horvai Andrew E4,Clapp D Wade2,Nakamura Jean L1

Affiliation:

1. Department of Radiation Oncology, School of Medicine, University of California, San Francisco, San Francisco, California, USA

2. Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA

3. Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA

4. Department of Pathology, School of Medicine, University of California, San Francisco, San Francisco, California, USA

Abstract

Abstract Background Genetically susceptible individuals can develop malignancies after irradiation of normal tissues. In the context of therapeutic irradiation, it is not known whether irradiating benign neoplasms in susceptible individuals promotes neoplastic transformation and worse clinical outcomes. Individuals with Neurofibromatosis 1 (NF1) are susceptible to both radiation-induced second malignancies and spontaneous progression of plexiform neurofibromas (PNs) to malignant peripheral nerve sheath tumors (MPNSTs). The role of radiotherapy in the treatment of benign neoplasms such as PNs is unclear. Methods To test whether radiotherapy promotes neoplastic progression of PNs and reduces overall survival, we administered spinal irradiation (SI) to conditional knockout mouse models of NF1-associated PNs in 2 germline contexts: Nf1fllfl; PostnCre+ and Nf1fl/-; PostnCre+. Both genotypes develop extensive Nf1 null spinal PNs, modeling PNs in NF1 patients. A total of 101 mice were randomized to 0 Gy, 15 Gy (3 Gy × 5), or 30 Gy (3 Gy × 10) of spine-focused, fractionated SI and aged until signs of illness. Results SI decreased survival in both Nf1fllfl mice and Nf1fl/- mice, with the worst overall survival occurring in Nf1fl/- mice receiving 30 Gy. SI was also associated with increasing worrisome histologic features along the PN-MPNST continuum in PNs irradiated to higher radiation doses. Conclusions This preclinical study provides experimental evidence that irradiation of pre-existing PNs reduces survival and may shift PNs to higher grade neoplasms.

Funder

National Institutes of Health

National Cancer Institute

Hagar Family Foundation

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3