Epigenetic dysregulation in meningiomas

Author:

Wedemeyer Michelle A1,Muskens Ivo2,Strickland Ben A3,Aurelio Oscar34,Martirosian Vahan4,Wiemels Joseph L2,Weisenberger Daniel J5,Wang Kai6ORCID,Mukerjee Debraj7,Rhie Suhn K5,Zada Gabriel34ORCID

Affiliation:

1. Department of Neurosurgery, University of California San Francisco, Benioff Children’s Hospitals , San Francisco, California , USA

2. Children’s Cancer Research Laboratory, Center of Genetic Epidemiology, Keck School of Medicine, University of Southern California , Los Angeles, California , USA

3. Department of Neurosurgery, Keck School of Medicine, University of Southern California , Los Angeles, California , USA

4. Brain Tumor Center, University of Southern California , Los Angeles, California , USA

5. Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, California , USA

6. Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute , Philadelphia, Pennsylvania , USA

7. Department of Neurosurgery, Johns Hopkins University School of Medicine , Baltimore, Maryland , USA

Abstract

Abstract Background Meningiomas are the most common primary brain tumor. Though typically benign with a low mutational burden, tumors with benign histology may behave aggressively and there are no proven chemotherapies. Although DNA methylation patterns distinguish subgroups of meningiomas and have higher predictive value for tumor behavior than histologic classification, little is known about differences in DNA methylation between meningiomas and surrounding normal dura tissue. Methods Whole-exome sequencing and methylation array profiling were performed on 12 dura/meningioma pairs (11 WHO grade I and 1 WHO grade II). Single-nucleotide polymorphism (SNP) genotyping and methylation array profiling were performed on an additional 19 meningiomas (9 WHO grade I, 5 WHO grade II, 4 WHO grade III). Results Using multimodal studies of meningioma/dura pairs, we identified 4 distinct DNA methylation patterns. Diffuse DNA hypomethylation of malignant meningiomas readily facilitated their identification from lower-grade tumors by unsupervised clustering. All clusters and 12/12 meningioma-dura pairs exhibited hypomethylation of the gene promoters of a module associated with the craniofacial patterning transcription factor FOXC1 and its upstream lncRNA FOXCUT. Furthermore, we identified an epigenetic continuum of increasing hypermethylation of polycomb repressive complex target promoters with increasing histopathologic grade. Conclusion These findings support future investigations of the role of epigenetic dysregulation of FOXC1 and cranial patterning genes in meningioma formation as well as studies of the utility of polycomb inhibitors for the treatment of malignant meningiomas.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Surgery,Oncology,Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3