Dissecting the tumor microenvironment of epigenetically driven gliomas: Opportunities for single-cell and spatial multiomics

Author:

Sussman Jonathan H12ORCID,Xu Jason12,Amankulor Nduka3,Tan Kai45

Affiliation:

1. Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania , USA

2. Medical Scientist Training Program, University of Pennsylvania , Philadelphia, Pennsylvania , USA

3. Department of Neurosurgery, Perelman School of Medicine , Philadelphia, Pennsylvania , USA

4. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania , USA

5. Center for Childhood Cancer Research, Children’s Hospital of Philadelphia , Philadelphia, Pennsylvania , USA

Abstract

Abstract Malignant gliomas are incurable brain neoplasms with dismal prognoses and near-universal fatality, with minimal therapeutic progress despite billions of dollars invested in research and clinical trials over the last 2 decades. Many glioma studies have utilized disparate histologic and genomic platforms to characterize the stunning genomic, transcriptomic, and immunologic heterogeneity found in gliomas. Single-cell and spatial omics technologies enable unprecedented characterization of heterogeneity in solid malignancies and provide a granular annotation of transcriptional, epigenetic, and microenvironmental states with limited resected tissue. Heterogeneity in gliomas may be defined, at the broadest levels, by tumors ostensibly driven by epigenetic alterations (IDH- and histone-mutant) versus non-epigenetic tumors (IDH-wild type). Epigenetically driven tumors are defined by remarkable transcriptional programs, immunologically distinct microenvironments, and incompletely understood topography (unique cellular neighborhoods and cell–cell interactions). Thus, these tumors are the ideal substrate for single-cell multiomic technologies to disentangle the complex intra-tumoral features, including differentiation trajectories, tumor-immune cell interactions, and chromatin dysregulation. The current review summarizes the applications of single-cell multiomics to existing datasets of epigenetically driven glioma. More importantly, we discuss future capabilities and applications of novel multiomic strategies to answer outstanding questions, enable the development of potent therapeutic strategies, and improve personalized diagnostics and treatment via digital pathology.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Surgery,Oncology,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3