After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation

Author:

Fletcher Jonathan S12,Pundavela Jay1,Ratner Nancy13

Affiliation:

1. Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio

2. Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio

3. Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio

Abstract

Abstract Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.

Funder

National Institutes of Health

Children’s Tumor Foundation

Revolution Medicine and Boehringer Ingelheim International GmbH

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Reference118 articles.

1. Inflammation and cancer: back to Virchow?;Balkwill;Lancet.,2001

2. Tumors: wounds that do not heal-redux;Dvorak;Cancer Immunol Res.,2015

3. Hallmarks of cancer: the next generation;Hanahan;Cell.,2011

4. Immunity, inflammation, and cancer;Grivennikov;Cell.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3