Affiliation:
1. Department of Diagnostic Imaging, St. Jude Children’s Research Hospital , Memphis, Tennessee , USA
Abstract
AbstractBackgroundSurgical resection is the gold standard in the treatment of pediatric posterior fossa tumors. However, surgical damage is often unavoidable and its association with postoperative complications is not well understood. A reliable localization and measure of cerebellar damage is fundamental to study the relationship between the damaged cerebellar regions and postoperative neurological outcomes. Existing cerebellum normalization methods are likely to fail on postoperative scans, therefore current approaches to measure postoperative damage rely on manual labelling. In this work, we develop a robust algorithm to automatically detect and measure cerebellum damage in postoperative 3D T1 magnetic resonance imaging (MRI).MethodsIn our approach, normal brain tissues are first segmented using a Bayesian algorithm customized for postoperative scans. Next, the cerebellum is isolated by nonlinear registration of a whole-brain template to the native space. The isolated cerebellum is then normalized into the spatially unbiased atlas (SUIT) space using anatomical information derived from the previous step. Finally, the damage is detected in the atlas space by comparing the normalized cerebellum and the SUIT template.ResultsWe evaluated our damage detection tool on postoperative scans of 153 patients with medulloblastoma based on inspection by human experts. We also designed a simulation to evaluate performance without human intervention and with an explicitly controlled and defined ground truth. Our results show that the approach performs adequately under various realistic conditions.ConclusionsWe develop an accurate, robust, and fully automatic localization and measurement of cerebellar damage in the atlas space using postoperative MRI.
Funder
American Lebanese Syrian Associated Charities
Publisher
Oxford University Press (OUP)
Subject
Surgery,Oncology,Neurology (clinical)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献