NBAT1/CASC15-003/USP36 control MYCN expression and its downstream pathway genes in neuroblastoma

Author:

Juvvuna Prasanna Kumar1,Mondal Tanmoy2,Di Marco Mirco1,Kosalai Subazini Thankaswamy1,Kanduri Meena3,Kanduri Chandrasekhar1

Affiliation:

1. Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden

2. Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden

3. Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden

Abstract

Abstract Background MYCN has been an attractive therapeutic target in neuroblastoma considering the widespread amplification of the MYCN locus in neuroblastoma, and its established role in neuroblastoma development and progression. Thus, understanding neuroblastoma-specific control of MYCN expression at the transcriptional and post-transcriptional level would lead to identification of novel MYCN-dependent oncogenic pathways and potential therapeutic strategies. Methods By performing loss- and gain-of-function experiments of the neuroblastoma hotspot locus 6p22.3 derived lncRNAs CASC15-003 and NBAT1, together with coimmunoprecipitation and immunoblotting of MYCN, we have shown that both lncRNAs post-translationally control the expression of MYCN through regulating a deubiquitinase enzyme USP36. USP36 oncogenic properties were investigated using cancer cell lines and in vivo models. RNA-seq analysis of loss-of-function experiments of CASC15-003/NBAT1/MYCN/USP36 and JQ1-treated neuroblastoma cells uncovered MYCN-dependent oncogenic pathways. Results We show that NBAT1/CASC15-003 control the stability of MYCN protein through their common interacting protein partner USP36. USP36 harbors oncogenic properties and its higher expression in neuroblastoma patients correlates with poor prognosis, and its downregulation significantly reduces tumor growth in neuroblastoma cell lines and xenograft models. Unbiased integration of RNA-seq data from CASC15-003, NBAT1, USP36, and MYCN knockdowns and neuroblastoma cells treated with MYCN inhibitor JQ1, identified genes that are jointly regulated by the NBAT1/CASC15-003/USP36/MYCN pathway. Functional experiments on one of the target genes, COL18A1, revealed its role in the NBAT1/CASC15-003-dependent cell adhesion feature in neuroblastoma cells. Conclusion Our data show post-translational regulation of MYCN by NBAT1/CASC15-003/USP36, which represents a new regulatory layer in the complex multilayered gene regulatory network that controls MYCN expression.

Funder

Knut and Alice Wallenberg Foundation

Swedish Cancer Research Foundation

Swedish Research Council

Barncancerfonden

Ingabritt Och Arne Lundbergs Forskningsstiftelse

Assar Gabrielssons Fond

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3