Irradiation of the subventricular zone and subgranular zone in high- and low-grade glioma patients: an atlas-based analysis on overall survival

Author:

Bruil Danique E1ORCID,David Szabolcs1ORCID,Nagtegaal Steven H J1ORCID,de Sonnaville Sophia F A M2ORCID,Verhoeff Joost J C1ORCID

Affiliation:

1. Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands

2. Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands

Abstract

Abstract Background Neural stem cells in the subventricular zone (SVZ) and subgranular zone (SGZ) are hypothesized to support growth of glioma. Therefore, irradiation of the SVZ and SGZ might reduce tumor growth and might improve overall survival (OS). However, it may also inhibit the repair capacity of brain tissue. The aim of this retrospective cohort study is to assess the impact of SVZ and SGZ radiotherapy doses on OS of patients with high-grade (HGG) or low-grade (LGG) glioma. Methods We included 273 glioma patients who received radiotherapy. We created an SVZ atlas, shared openly with this work, while SGZ labels were taken from the CoBrA atlas. Next, SVZ and SGZ regions were automatically delineated on T1 MR images. Dose and OS correlations were investigated with Cox regression and Kaplan-Meier analysis. Results Cox regression analyses showed significant hazard ratios for SVZ dose (univariate: 1.029/Gy, P < .001; multivariate: 1.103/Gy, P = .002) and SGZ dose (univariate: 1.023/Gy, P < .001; multivariate: 1.055/Gy, P < .001) in HGG patients. Kaplan-Meier analysis showed significant correlations between OS and high-/low-dose groups for HGG patients (SVZ: respectively 10.7 months (>30.33 Gy) vs 14.0 months (<30.33 Gy) median OS, P = .011; SGZ: respectively 10.7 months (>29.11 Gy) vs 15.5 months (<29.11 Gy) median OS, P < .001). No correlations between dose and OS were found for LGG patients. Conclusion Irradiation doses on neurogenic areas correlate negatively with OS in patients with HGG. Whether sparing of the SVZ and SGZ during radiotherapy improves OS, should be subject of prospective studies.

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Reference50 articles.

1. Brain tumour stem cells;Vescovi;Nature Rev Cancer,2006

2. Neuro-oncologie;Reijneveld,2010

3. Beloop en beleid bij vermoeden van een laaggradig glioom;Sizoo;Nederlands Tijd Geneesk,2010

4. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma;Stupp;New Engl J Med,2005

5. Human glioblastoma arises from subventricular zone cells with low-level driver mutations;Lee;Nature,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3