Feasibility study of a non-invasive eye fixation and monitoring device using a right-angle prism mirror for intensity-modulated radiotherapy for choroidal melanoma

Author:

Inoue Toshihiko1,Masai Norihisa1,Shiomi Hiroya1,Oh Ryoong-Jin1,Uemoto Kenji1,Hashida Noriyasu2

Affiliation:

1. Miyakojima IGRT Clinic, 1-16-22, Miyakojimahondori, Miyakojima-ku, 534-0021, Japan

2. Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Abstract We aimed to describe the feasibility and efficacy of a novel non-invasive fixation and monitoring (F-M) device for the eyeballs (which uses a right-angle prism mirror as the optic axis guide) in three consecutive patients with choroidal melanoma who were treated with intensity-modulated radiotherapy (IMRT). The device consists of an immobilization shell, a right-angle prism mirror, a high magnification optical zoom video camera, a guide lamp, a digital voice recorder, a personal computer, and a National Television System Committee standard analog video cable. Using the right-angle prism mirror, the antero–posterior axis was determined coincident with the optic axis connecting the centers of the cornea and pupil. The axis was then connected to the guide light and video camera installed on the couch top on the distal side. Repositioning accuracy improved using this method. Furthermore, the positional error of the lens was markedly reduced from ±1.16, ±1.68 and ±1.11 mm to ±0.23, ±0.58 and ±0.26 mm in the horizontal direction, and from ±1.50, ±1.03 and ±0.48 mm to ±0.29, ±0.30 and ±0.24 mm in the vertical direction (Patient #1, #2 and #3, respectively). Accordingly, the F-M device method decreased the planning target volume size and improved the dose–volume histogram parameters of the organ-at-risk via IMRT inverse planning. Importantly, the treatment method was well tolerated.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3