Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells

Author:

Beer Lucian12,Nemec Lucas34,Wagner Tanja3,Ristl Robin5,Altenburger Lukas M.6,Ankersmit Hendrik Jan237,Mildner Michael6

Affiliation:

1. Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria

2. Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Austria

3. Department of Thoracic Surgery, Medical University of Vienna, Austria

4. Molecular Biotechnology, University of Applied Sciences FH Campus Wien, Vienna, Austria

5. Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria

6. Department of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria

7. Head FFG Project 852748 ‘APOSEC’, FOLAB Surgery, Medical University of Vienna, Vienna, Austria

Abstract

AbstractLong non-coding RNAs (lncRNAs) are non-protein coding transcripts that modulate mRNA and microRNA (miRNA) expression, thereby controlling multiple cellular processes, including transcriptional regulation of gene expression, cell differentiation and apoptosis. Ionizing radiation (IR), a strong cellular stressor, is known to influence gene expression of irradiated cells, mainly by activation of oxidative processes. Whether and how IR also affects lncRNA expression in human peripheral blood mononuclear cells (PBMCs) is still poorly understood. Exposure of PBMCs to IR dose-dependently activated p53 and its downstream target p21, ultimately leading to cell-cycle arrest and/or apoptosis. Cleavage of caspase-3, a specific process during apoptotic cell death, was detectable at doses as low as 30 Gy. Transcriptome analysis of 60 Gy–irradiated PBMCs revealed a strong time-dependent regulation of a variety of lncRNAs. Among many unknown lncRNAs we also identified a significant upregulation of Trp53cor1, MEG3 and TUG1, which have been shown to be involved in the regulation of cell cycle and apoptotic processes mediated by p53. In addition, we found 177 miRNAs regulated in the same samples, including several miRNAs that are known targets of upregulated lncRNAs. Our data show that IR dose-dependently regulates the expression of a wide spectrum of lncRNAs in PBMCs, suggesting a crucial role for lncRNAs in the complex regulatory machinery activated in response to IR.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3