Adaptability evaluation of pavement structure to replacement treatment subgrade of black cotton soil

Author:

Luan Yingcheng1,Ma Yuan12,Zhang Weiguang1,Zhang Yuqing34,Ma Tao1,Lee Jusang5

Affiliation:

1. School of Transportation, Southeast University, 2# Southeast University Road, Jiangning District, Nanjing 211189, China

2. Qilu Transportation Development Group, No. 1 Lg'ao West Rd, Lixia District, Jinan 250000, China

3. National Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

4. Aston Institute of Materials Research, Engineering Systems & Management Group, Aston University, Birmingham, B4 7ET, UK

5. Indiana Department of Transportation, West Lafayette, IN 47906, USA

Abstract

Abstract Aiming at the typical engineering problem of black cotton soil (BCS) subgrade under the alternation of dry and wet climate in the region of Nairobi, Kenya, this paper takes the pavement structure as the research object, and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil. Taking the modulus and thickness of the subbase as variables, the deformation characteristics and additional stresses of different pavement structures are analysed. Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method. The results show that whatever the pavement structure is, neither subgrade modulus nor thickness is sensitive to the pavement surface deformation, and the deformation differences between each pavement structure are more obvious in wet season; the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus, whereas the stress may increase at subbase bottom; the additional stress at subbase bottom, control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II. For pavement Structure III, the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface, whereas the stress at subbase bottom increases with the increase of subbase thickness. It is concluded that the most adaptable structure is pavement Structure I, which can minimize the comprehensive level of pavement settlement and additional stress.

Funder

Department of Transportation of Shandong Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3