Predictive Modeling for Personalized Three-Dimensional Burn Injury Assessments

Author:

Desbois Adrien12ORCID,Beguet Florian12,Leclerc Yannick3,González Hernández Angel Eduardo4,Gervais Sylvie1,Perreault Isabelle5,de Guise Jacques A12

Affiliation:

1. École de Technologie Supérieure (ÉTS), Montréal, Quebec, Canada

2. Laboratoire de Recherche en Imagerie et Orthopédie (LIO)—Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec), Canada

3. Département de Médecine Générale, Université de Montréal, Montréal (Quebec), Canada

4. Département de Médecine Générale, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México

5. Division de Chirurgie Plastique, Faculté de Médecine, Département de Chirurgie, Université de Montréal, Montréal, Quebec, Canada

Abstract

Abstract For patients with major burn injuries, an accurate burn size estimation is essential to plan appropriate treatment and minimize medical and surgical complications. However, current clinical methods for burn size estimation lack accuracy and reliability. To overcome these limitations, this paper proposes a 3D-based approach—with personalized 3D models from a limited set of anthropometric measurements—to accurately assess the percent TBSA affected by burns. First, a reliability and feasibility study of the anthropometric measuring process was performed to identify clinically relevant measurements. Second, a large representative stratified random sample was generated to output several anthropometric features required for predictive modeling. Machine-learning algorithms assessed the importance and the subsets of anthropometric measurements for predicting the BSA according to specific patient morphological features. Then, the accuracy of both the morphology and BSA of 3D models built from a limited set of measurements was evaluated using error metrics and maximum distances 3D color maps. Results highlighted the height and circumferences of the bust, neck, hips, and waist as the best predictors for BSA. 3D models built from three to four anthropometric measurements showed good accuracy and were geometrically close to gold standard 3D scans. Outcomes of this study aim to decrease medical and surgical complications by decreasing errors in percent TBSA assessments and, therefore, improving patient outcomes by personalizing care.

Funder

Natural Sciences and Engineering Research Council

Canada Research Chair of Jacques de Guise

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Reference65 articles.

1. Thermal injury—the first 24 h;Durrant;Curr Anaesth Crit Care,2008

2. Burns area estimation—an error perpetuated;Jose;Burns,2004

3. The potential impact of wrong TBSA estimations on fluid resuscitation in patients suffering from burns: things to keep in mind;Parvizi;Burns,2014

4. Modelling human burn injuries in a three-dimensional virtual environment;Dirnberger;Stud Health Technol Inform,2003

5. “Understanding burns”: research project BurnCase 3D–overcome the limits of existing methods in burns documentation;Haller;Burns,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3