Cloning, expression, and bioinformatics analysis of heavy metal resistance-related genes fd-I and fd-II from Acidithiobacillus ferrooxidans

Author:

Leng Feifan1,Wu Yamiao1,Hu Shu1,Jing Yanjun1,Ding Miao1,Wei Qingwei1,Zhang Qingchun2,Wang Yonggang1

Affiliation:

1. School of Life Science and Engineering, Lanzhou University of Technology , 730050 Lanzhou , PR China

2. Agricultural Technology Extension Center of Kangxian County , 746500 Kangxian , PR China

Abstract

Abstract Five heavy metals were introduced into the bacterial heavy metal resistance tests. The results showed that apparent inhibition effects of Cd2+ and Cu2+ on the growth of Acidithiobacillus ferrooxidans BYSW1 occurred at high concentrations (>0.04 mol l−1). Significant differences (P < 0.001) were both noticed in the expression of two ferredoxin-encoding genes (fd-I and fd-II) related to heavy metal resistance in the presence of Cd2+ and Cu2+ . When exposed to 0.06 mol l−1 Cd2+, the relative expression levels of fd-I and fd-II were about 11 and 13 times as much as those of the control, respectively. Similarly, exposure to 0.04 mol l−1 Cu2+ caused approximate 8 and 4 times higher than those of the control, respectively. These two genes were cloned and expressed in Escherichia coli, and the structures, functions of two corresponding target proteins, i.e. Ferredoxin-I (Fd-I) and Ferredoxin-II (Fd-II), were predicted. The recombinant cells inserted by fd-I or fd-II were more resistant to Cd2+ and Cu2+ compared with wild-type cells. This study was the first investigation regarding the contribution of fd-I and fd-II to enhancing heavy metal resistance of this bioleaching bacterium, and laid a foundation for further elucidation of heavy metal resistance mechanisms caused by Fd.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3