Affiliation:
1. School of Life Science and Engineering, Lanzhou University of Technology , 730050 Lanzhou , PR China
2. Agricultural Technology Extension Center of Kangxian County , 746500 Kangxian , PR China
Abstract
Abstract
Five heavy metals were introduced into the bacterial heavy metal resistance tests. The results showed that apparent inhibition effects of Cd2+ and Cu2+ on the growth of Acidithiobacillus ferrooxidans BYSW1 occurred at high concentrations (>0.04 mol l−1). Significant differences (P < 0.001) were both noticed in the expression of two ferredoxin-encoding genes (fd-I and fd-II) related to heavy metal resistance in the presence of Cd2+ and Cu2+ . When exposed to 0.06 mol l−1 Cd2+, the relative expression levels of fd-I and fd-II were about 11 and 13 times as much as those of the control, respectively. Similarly, exposure to 0.04 mol l−1 Cu2+ caused approximate 8 and 4 times higher than those of the control, respectively. These two genes were cloned and expressed in Escherichia coli, and the structures, functions of two corresponding target proteins, i.e. Ferredoxin-I (Fd-I) and Ferredoxin-II (Fd-II), were predicted. The recombinant cells inserted by fd-I or fd-II were more resistant to Cd2+ and Cu2+ compared with wild-type cells. This study was the first investigation regarding the contribution of fd-I and fd-II to enhancing heavy metal resistance of this bioleaching bacterium, and laid a foundation for further elucidation of heavy metal resistance mechanisms caused by Fd.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献