Development of a small shuttle plasmid for use in oral Veillonella and initial appraisal of potential for fluorescence-based applications

Author:

Goetting-Minesky M Paula1,Kim Jordan2,White Duane T2,Hayashi Michael2ORCID,Rickard Alexander H2,Fenno J Christopher1

Affiliation:

1. Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan , Ann Arbor, MI 48109 , United States

2. Department of Epidemiology, School of Public Health, University of Michigan , Ann Arbor, MI 48109 , United States

Abstract

Abstract Oral Veillonella species are among the early colonizers of the human oral cavity. We constructed a small, single-selectable-marker shuttle plasmid, examined its ability to be transformed into diverse oral Veillonella strains, and assessed its potential use for expressing a gene encoding an oxygen-independent fluorescent protein, thus generating a fluorescent Veillonella parvula strain. Because tetracycline resistance is common in Veillonella, we replaced genes encoding ampicillin- and tetracycline-resistance in a previously described shuttle plasmid (pBSJL2) with a chloramphenicol acetyltransferase gene. The resulting plasmid pCF1135 was successfully introduced into four strains representing V. parvula and V. atypica by either natural transformation or electroporation. We then modified this plasmid to express a gene encoding an oxygen-independent fluorescent protein in V. parvula SKV38. The resulting strain yielded a fluorescence signal intensity ∼16 times higher than the wild type in microplate-based fluorimetry experiments. While fluorescence microscopy demonstrated that planktonic cells, colonies, and biofilms of fluorescent V. parvula could also be imaged, photobleaching was a significant issue. In conclusion, we anticipate this genetic system and information provided here will facilitate expanded studies of oral Veillonella species’ properties and behavior.

Funder

NIH

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3