Autotrophic growth activity of complete ammonia oxidizers in an upflow biological contact filter for drinking water treatment

Author:

Ishizaki Yuta1,Kurisu Futoshi2,Furumai Hiroaki3,Kasuga Ikuro14ORCID

Affiliation:

1. Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo , Bunkyo, Tokyo 113-8656 , Japan

2. Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo , Bunkyo, Tokyo 113-8656 , Japan

3. Research and Development Initiative, Chuo University , Bunkyo, Tokyo 112-8551 , Japan

4. Research Center for Advanced Science and Technology, The University of Tokyo , Meguro, Tokyo 153-8904 , Japan

Abstract

Abstract Biological filters effectively remove ammonium from drinking water via nitrification. In a pilot-scale upflow biological contact filter (U-BCF), complete ammonia oxidizers (comammox), which are capable of oxidizing ammonia to nitrate in one cell, were more abundant than ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, little information is available on the contribution of comammox to nitrification. In this study, we evaluated the autotrophic growth activity of comammox associated with biological activated carbon (BAC) in a U-BCF by DNA-stable isotope probing (DNA-SIP). BAC samples collected from the U-BCF were continuously fed mineral medium containing 0.14 mg N L−1 ammonium and 12C- or 13C-labeled bicarbonate for 20 days. DNA-SIP analysis revealed that comammox (clades A and B) as well as AOA assimilated bicarbonate after 10 days of incubation, proving that dominant comammox could contribute to nitrification. Contrarily, AOB remained inactive throughout the observation period. Amplicon sequencing of the 13C-labeled DNA fractions of comammox revealed that specific genotypes other than the most dominant genotype in the original sample were more enriched under the incubation condition for the DNA-SIP experiment. Thus, dominant genotypes of comammox in a U-BCF might utilize organic nitrogen to fuel nitrification in ammonia-limited environments.

Funder

collaboration research with Tokyo Waterworks

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3