Mining of a novel reductase and its application for asymmetric reduction of p-methoxyacetophenone

Author:

Wang Nengqiang12,Li Xiaojun3

Affiliation:

1. College of Basic Medicine, Youjiang Medical University for Nationalities , Baise 533000, Guangxi , China

2. Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Education Department of Guangxi Zhuang Autonomous Region , Baise 533000, Guangxi , China

3. Department of Fundamental Medicine, Xinyu University , Xinyu 338004, Jiangxi , China

Abstract

Abstract (R)-1-(4-methoxyphenyl) ethanol [(R)-1b] is an essential precursor for the synthesis of aryl propanoic acids’ anti-inflammatatory drugs. Biocatalysts for (R)-1b preparation are limited and reductase has problems of low substrate concentration and low conversion rate. As a result, there is a constant need for discovering novel biocatalysts with excellent catalytic performances. In this study, a novel reductase LpSDR from Lacisediminihabitans profunda for the biocatalytic reduction of p-methoxyacetophenone (1a) to (R)-1b was obtained based on gene-mining technology, and some key reaction parameters were also investigated to improve the conversion rate of 1a using whole cells of recombinant Escherichia coli expressing reductase LpSDR as biocatalysts. It was found that the optimal concentration of isopropanol, ZnSO4·7H2O solution, 1a, and recombinant E. coli resting cells, the optimal reaction temperature, buffer pH, and reaction time were 1.95 mol l−1, 0.75 mmol l−1, 75 mmol l−1, 250 g (wet weight) l−1, 28°C, 7.0, and 21 h, respectively. Under the above conditions, a conversion rate of 99.5% and an enantiomeric excess of 99.6% were obtained, which were superior to the corresponding values previously reported. This study provides a novel reductase LpSDR, which is helpful in reducing 1a to (R)-1b.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3