Competitiveness of reutericyclin producing and nonproducing Limosilactobacillus reuteri in food and intestinal ecosystems: a game of rock, paper, and scissors?

Author:

Lin Xiaoxi B1,Liu Tingting1,Schmaltz Robert2,Ramer-Tait Amanda E23ORCID,Walter Jens W1,Gänzle Michael G14ORCID

Affiliation:

1. University of Alberta, Dept. of Agricultural, Food and Nutritional Scienence , Edmonton, AB T6G 2P5 , Canada

2. Department of Food Science and Technology, University of Nebraska-Lincoln , Lincoln, NE 68588-6205 , United States

3. Nebraska Food for Health Center, University of Nebraska-Lincoln , Lincoln, NE 68508 , United States

4. Dept. of Bioengineering and Food Science, Hubei University of Technology , Wuhan 430068 , P.R. China

Abstract

Abstract The ecological relationships among antimicrobial producing, resistant, and sensitive strains have been proposed to follow rock-paper-scissors dynamics, but evidence is mainly based on Gram-negative bacteriocins in vitro. The ecological relevance of antimicrobials in vivo or in situ has not been systematically studied. This study therefore aimed to analyze binary and ternary competitions among reutericyclin-producing strain Limosilactobacillus reuteri TMW1.656, its reutericyclin-resistant, nonproducing isogenic derivative L. reuteri TMW1.656∆rtcN, and the reutericyclin-sensitive, nonproducing L. reuteri TMW1.656∆rtcN∆rtcT in vitro (liquid culture and static plate), in situ (sourdough fermentation), and in vivo (gut of germ-free mice). In liquid culture, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Limosilactobacillus reuteri TMW1.656∆rtcN∆rtcT had a higher fitness than TMW1.656∆rtcN. On agar plates, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN∆rtcT. In situ, reutericyclin production and resistance had no influence on the fitness of the strains. In vivo, TMW1.656 had an advantage over TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Ternary competitions showed reutericyclin production was ecologically beneficial in all ecosystems. The findings support the ecological importance of reutericyclin in a variety of environments/niches, providing an explanation for the acquisition of the reutericyclin gene cluster in L. reuteri and its contribution to the ecological fitness of Streptococcus mutans.

Funder

Canada Research Chairs

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3