Efficacy of detergent-based cleaning and wiping against SARS-CoV-2 on high-touch surfaces

Author:

Nelson S W1,Hardison R L1,Limmer R2,Marx J2,Taylor B M2,James R R1,Stewart M J3,Lee S D3,Calfee M W3,Ryan S P3,Howard M W1

Affiliation:

1. Bioscience Center, Battelle Memorial Institute , Columbus, OH 43201 , USA

2. Battelle Eastern Science and Technology Center , Aberdeen, MD 21001 , USA

3. U.S. EPA, Office of Research and Development , Durham, NC 27711 , USA

Abstract

AbstractEfficacy of cleaning methods against SARS-CoV-2 suspended in either 5% soil load (SARS-soil) or simulated saliva (SARS-SS) was evaluated immediately (hydrated virus, T0) or 2 hours post-contamination (dried virus, T2). Hard water dampened wiping (DW) of surfaces, resulted in 1.77–3.91 log reduction (T0) or 0.93–2.41 log reduction (T2). Incorporating surface pre-wetting by spraying with a detergent solution (D + DW) or hard water (W + DW) just prior to dampened wiping did not unilaterally increase efficacy against infectious SARS-CoV-2, however, the effect was nuanced with respect to surface, viral matrix, and time. Cleaning efficacy on porous surfaces (seat fabric, SF) was low. W + DW on stainless steel (SS) was as effective as D + DW for all conditions except SARS-soil at T2 on SS. DW was the only method that consistently resulted in > 3-log reduction of hydrated (T0) SARS-CoV-2 on SS and ABS plastic. These results suggest that wiping with a hard water dampened wipe can reduce infectious virus on hard non-porous surfaces. Pre-wetting surfaces with surfactants did not significantly increase efficacy for the conditions tested. Surface material, presence or absence of pre-wetting, and time post-contamination affect efficacy of cleaning methods.

Funder

Battelle Memorial Institute

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3