Microbial communities associated with resin canal discoloration in mango fruit

Author:

Umar Muhammad1,Bowman John P2,Asis Constancio3,McConchie Cameron3,Eyles Alieta1ORCID,Stanley Roger1,Gracie Alistair1ORCID

Affiliation:

1. ARC Training Centre for Innovative Horticultural Products, Tasmania Institute of Agriculture, University of Tasmania , Private Bag 54, Hobart, TAS 7001 , Australia

2. Tasmania Institute of Agriculture, University of Tasmania , Private Bag 54, Hobart, TAS 7001 , Australia

3. Northern Territory Department of Industry, Tourism and Trade , Berrimah Farm Science Precinct, GPO Box 3000, Darwin, NT 0801 , Australia

Abstract

Abstract Resin canal discoloration (RCD) severely impacts the fruit quality of mango, diminishes consumer confidence, and reduces sales, but the biological cause is still unclear. Using next-generation sequencing, the overall microbial community composition of RCD+ and visually healthy mango fruits was determined for the first time to examine the possible role of bacterial and fungal pathogens in RCD. The diversity profile of bacterial and fungal communities was determined using primers targeting the 16S rRNA gene and Internal Transcribed Spacer (ITS) regions. Results showed that bacterial communities in healthy fruits are clustered together and significantly different from those in RCD+ fruits. Tatumella and Pantoea species were the most abundant bacterial taxa on RCD+ fruit, and both have been linked to disease outbreaks in a variety of fruit crops. Fungal communities were generally similar between RCD+ and normal samples, though non-pathogenic yeasts Meyerozyma and Naganishia tended to dominate the fungal communities on RCD+ fruit. The study indicates that bacteria rather than fungal organisms are more likely to be associated with RCD in mango. This finding will facilitate the isolation and confirmation of RCD-causing organisms and the development of control strategies to manage RCD problem in mango.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3