Maturation of pathogenic biofilms induces enhanced resistance against gaseous chlorine dioxide

Author:

Kim Se-Yeon1,Park SangHyun1ORCID

Affiliation:

1. Department of Food Science and Technology, Kongju National University , Yesan, Chungnam 32439 , Republic of Korea

Abstract

AbstractBiofilms are surface-associated microbial clusters embedded in extracellular polymeric substances. Biofilms formed on food-contact surfaces create challenges for the food industry due to their increased tolerance to antimicrobial agents and disinfectants. This study aimed to evaluate the effect of the biofilm maturation period on their resistance to gaseous ClO2. Listeria monocytogenes, Salmonellaserotype Typhimurium, and Escherichia coli O157:H7 biofilms formed on stainless steel (SS) and high-density polyethylene (HDPE) surfaces were investigated. The total cell mass and protein content significantly increased (P < .05) between the second and the fifth day of maturation, and the biofilms’ resistance to gaseous ClO2 increased as they matured. Generally, the cell counts of 0-day-old L. monocytogenes, Salm. Typhimurium, and E. coli O157:H7 biofilms on SS and HDPE reduced below the detection limit (0.48 log CFU/cm2) within 5 min. The cell counts of 2-day-old biofilms of the three pathogens were reduced by 6.22 to over 7.52 log, while those of 5-day-old biofilms were reduced by 3.64 to over 6.34 log after 20 min of treatment with 30 ppmv of gaseous ClO2. Therefore, as resistance increases with biofilm maturation, daily gaseous ClO2 treatment would maximize the antimicrobial efficacy of the cleaning strategy against biofilms.

Funder

National Research Foundation of Korea

Korea Forest Service

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3