Large-scale preparation of yeast strains expressing condensates derived from a glycolytic enzyme via controlled dissolved oxygen levels under hypoxia

Author:

Murata Yuki1,Hirayama Reina1,Miura Natsuko12ORCID,Kataoka Michihiko12

Affiliation:

1. Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai 599-8531 , Japan

2. Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University , Sakai 599-8531 , Japan

Abstract

Abstract Under hypoxia, Saccharomyces cerevisiae forms cytoplasmic condensates composed of proteins, including glycolytic enzymes, that are thought to regulate cellular metabolism. However, the hypoxic conditions required for condensate formation remain unclear. In this study, we developed a 300-mL-scale culture method to produce condensate-forming cells by precisely controlling the dissolved oxygen (DO) level in the media. Using enolase as a model, a foci formation rate of more than 50% was achieved at ∼0.1% DO, and the results showed that the DO level affected the foci formation rate. The foci formation rates of the previously reported foci-deficient strains and strains with single amino acid substitutions in the endogenous enolase were examined, and the effect of these amino acid substitutions on glucose consumption and ethanol and glycerol production under hypoxia was evaluated. The results of this study contribute to the investigation of the mechanisms that regulate biomacromolecular condensates under hypoxia.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3