A dimension-reduced neural network-assisted approximate Bayesian computation for inverse heat conduction problems

Author:

Zeng Yang1

Affiliation:

1. Zhuzhou CRRC Times Electric Co., Ltd

Abstract

Abstract Due to the flexibility and feasibility of addressing ill-posed problems, the Bayesian method has been widely used in inverse heat conduction problems (IHCPs). However, in the real science and engineering IHCPs, the likelihood function of the Bayesian method is commonly computationally expensive or analytically unavailable. In this study, in order to circumvent this intractable likelihood function, the approximate Bayesian computation (ABC) is expanded to the IHCPs. In ABC, the high dimensional observations in the intractable likelihood function are equalized by their low dimensional summary statistics. Thus, the performance of the ABC depends on the selection of summary statistics. In this study, a machine learning-based ABC (ML-ABC) is proposed to address the complicated selections of the summary statistics. The Auto-Encoder (AE) is a powerful Machine Learning (ML) framework which can compress the observations into very low dimensional summary statistics with little information loss. In addition, in order to accelerate the calculation of the proposed framework, another neural network (NN) is utilized to construct the mapping between the unknowns and the summary statistics. With this mapping, given arbitrary unknowns, the summary statistics can be obtained efficiently without solving the time-consuming forward problem with numerical method. Furthermore, an adaptive nested sampling method (ANSM) is developed to further improve the efficiency of sampling. The performance of the proposed method is demonstrated with two IHCP cases.

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

Reference33 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Machine Learning Solution for the Inverse Heat Conduction Problem with Synthetic Datasets;2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI);2023-05-23

2. Examining the characteristics between time and distance gaps of secondary crashes;Transportation Safety and Environment;2023-03-17

3. Introduction to special issue on high-efficiency and intelligent train traction system;Transportation Safety and Environment;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3