Experimental study on the effect of canyon cross wind on temperature distribution of buoyancy-induced smoke layer in tunnel fires

Author:

Fan Chuangang12,Yang Liliang12,Luan Dia12,Chen Tao12,Jiao Ao12,Ouyang Richeng12,Wang Juan12,Chen Changkun12

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China

2. Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structures, Central South University, Changsha 410075, Hunan, China

Abstract

Abstract Experiments were conducted in a 1:20 arced tunnel model to investigate the effect of canyon cross wind on buoyancy-induced smoke flow characteristics of pool fires, involving smoke movement behaviour and longitudinal temperature distribution of smoke layer. The canyon wind speed, longitudinal fire location and fire size were varied. Results show that there are two special smoke behaviours with the fire source positioned at different flow field zones. When the fire source is positioned at the negative pressure zone, with increasing canyon wind speed, the smoke always exists upstream mainly due to the vortex, and the smoke temperature near the fire source increases first and then decreases. However, when the fire source is located in the transition zone and the unidirectional flow zone, there is no smoke appearing upstream with a certain canyon wind speed. Meanwhile, the smoke temperature near the fire sources are decreases with increasing canyon wind speed. The dimensionless temperature rise of the smoke layer ΔTs* along the longitudinal direction of the tunnel follows a good exponential decay. As the canyon wind speed increases, the longitudinal decay rate of ΔTs* decreases. The longitudinal decay rate of ΔTs* downstream of the fire is related to the fire location and canyon wind speed, and independent of the fire size. The empirical correlations for predicting the longitudinal decay of ΔTs* downstream of the fire are established. For a relatively large-scale fire, the longitudinal decay rate of ΔTs* upstream of the fire increases as the distance between the fire source and the upstream portal increases, especially for larger canyon wind speeds.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province of China

Fundamental Research Funds for the Central Universities of Central South University

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3