Callose deficiency modulates plasmodesmata frequency and extracellular distance in rice pollen mother and tapetal cells

Author:

Somashekar Harsha12,Takanami Keiko234,Benitez-Alfonso Yoselin5ORCID,Oishi Akane3,Hiratsuka Rie6,Nonomura Ken-Ichi12ORCID

Affiliation:

1. Plant Cytogenetics Laboratory, National Institute of Genetics , Mishima ,  Japan

2. School of Life Science, The Graduate University for Advanced Studies , SOKENDAI, Hayama, Kanagawa ,  Japan

3. Mouse Genomics Resource Laboratory, National Institute of Genetics , Mishima   Japan

4. Department of Environmental Health, Nara Women’s University , Nara ,  Japan

5. Centre for Plant Sciences, School of Biology, University of Leeds , Leeds LS2 9JT , UK

6. Faculty of Medicine, School of Medicine, The Jikei University School of Medicine , Tokyo ,  Japan

Abstract

Abstract Background and Aims Fertilization relies on pollen mother cells able to transition from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels, including (but not limited to) remodelling of the cell wall. During the onset of meiosis, the cellulose content in the pollen mother cell walls gradually declines, with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls. Methods We carried out electron microscopic, aniline blue and renaissance staining analyses of rice flowers. Key Results Our observations indicate that in wild-type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells, suggesting a role for callose in maintenance of plasmodesmata. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant. Conclusions The results suggest that callose-to-cellulose turnover during the transition from mitosis to meiosis is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. The findings of this study contribute to our understanding of the regulatory influence of callose metabolism during initiation of meiosis in flowering plants.

Funder

Japan Society for the Promotion of Science

Bilateral Programs

Ministry of Education, Culture, Sports, Science and Technology, Japan

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3