The distribution of self-incompatibility systems in angiosperms: the relationship between mating system diversity, life span, growth habit and latitude in a changing global environment

Author:

Ferrer Miriam Monserrat1,Vásquez-Cruz Marilyn2,Verde-Cáceres Mirley Arlyn1,Magaña-Rosado Uriel Christopher1,Good Sara Victoria34

Affiliation:

1. Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán , Mérida Yucatán , México

2. Tecnológico Nacional de México/ITS Irapuato , Guanajuato , Mexico

3. Department of Biology, The University of Winnipeg , Winnipeg, Manitoba , Canada

4. Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada

Abstract

Abstract Background and Aims There is ample theoretical and experimental evidence that angiosperms harbouring self-incompatibility (SI) systems are likely to respond to global changes in unique ways relative to taxa with other mating systems. In this paper, we present an updated database on the prevalence of SI systems across angiosperms and examine the relationship between the presence of SI and latitude, biomes, life-history traits and management conditions to evaluate the potential vulnerability of SI taxa to climate change and habitat disturbance. Methods We performed literature searches to identify studies that employed controlled crosses, microscopic analyses and/or genetic data to classify taxa as having SI, self-compatibility (SC), partial self-compatibility (PSC) or self-sterility (SS). Where described, the site of the SI reaction and the presence of dimorphic versus monomorphic flowers were also recorded. We then combined this database on the distribution of mating systems with information about the life span, growth habit, management conditions and geographic distribution of taxa. Information about the geographic distribution of taxa was obtained from a manually curated version of the Global Biodiversity Information Facility database, and from vegetation surveys encompassing nine biomes. We employed multinomial logit regression to assess the relationship between mating system and life-history traits, management condition, latitude and latitude-squared using self-compatible taxa as the baseline. Additionally, we employed LOESS regression to examine the relationship between the probability of SI and latitude. Finally, by summarizing information at the family level, we plotted the distribution of SI systems across angiosperms, including information about the presence of SI or dioecy and the inferred reaction site of the SI system when known, as well as the proportion of taxa in a family for which information is available. Key Results We obtained information about the SI status of 5686 hermaphroditic taxa, of which 55% exhibit SC and the remaining 45% harbour SI, SS or PSC. Highlights of the multinomial logit regression include that taxa with PSC have a greater odds of being short-lived (OR = 1.3) or long-lived (OR = 1.57) perennials relative to SC ones, and that SS/SI taxa (pooled) are less likely to be annuals (OR = 0.64) and more likely to be long-lived perennials (OR = 1.32). SS/SI taxa had a greater odds of being succulent (OR = 2.4) or a tree (OR = 2.05), and were less likely to be weeds (OR = 0.34). Further, we find a quadratic relationship between the probability of being self-incompatible with latitude: SI taxa were more common in the tropics, a finding that was further supported by the vegetation surveys, which showed fewer species with SS/SI in temperate and northern latitudes compared with Mediterranean and tropical biomes. Conclusions We conclude that in the short-term habitat fragmentation, pollinator loss and temperature increases may negatively impact plants with SI systems, particularly long-lived perennial and woody species dominant in tropical forests. In the longer term, these and other global changes are likely to select for self-compatible or partially self-compatible taxa, which, due to the apparent importance of SI as a driver of plant diversification across the angiosperm tree of life, may globally influence plant species richness.

Funder

CONACYT

Publisher

Oxford University Press (OUP)

Reference166 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3