Affiliation:
1. Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC) , Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba , Spain
2. Departamento de Genética, Facultad de Ciencias, Universidad de Granada , Avda. Fuentenueva s/n, 18071 Granada , Spain
Abstract
Abstract
Background and Aims
Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programmes during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a comparative analysis with the previously published bread wheat satellitome.
Methods
We revealed the durum wheat satellitome using the satMiner protocol, which is based on consecutive rounds of clustering of Illumina reads by RepeatExplorer2, and we estimated abundance and variation for each identified satellite DNA (satDNA) with RepeatMasker v4.0.5. We also performed a deep satDNA family characterization including chromosomal location by fluorescence in situ hybridization (FISH) in durum wheat and its comparison with FISH patterns in bread wheat. BLAST was used for trailing each satDNA in the assembly of durum wheat genome through NCBI’s Genome Data Viewer and the genome assemblies of both species were compared. Sequence divergence and consensus turnover rate between homologous satDNA families of durum and bread wheat were estimated using MEGA11.
Key Results
This study reveals that in an exceedingly short period, significant qualitative and quantitative changes have occurred in the set of satDNAs of both species, with expansions/contractions of the number of repeats and the loci per satellite, different in each species, and a high rate of sequence change for most of these satellites, in addition to the emergence/loss of satDNAs not shared between the two species analysed. These evolutionary changes in satDNA are common between species but what is truly remarkable and novel is that these processes have taken place in less than the last ~8000 years separating the two species, indicating an accelerated evolution of their satDNAs.
Conclusions
These results, together with the relationship of many of these satellites with transposable elements and the polymorphisms they generate at the level of centromeres and subtelomeric regions of their chromosomes, are analysed and discussed in the context of the evolutionary origin of these species and the selection pressure exerted by humans throughout the history of their cultivation.
Funder
Ministerio de Ciencia e Innovación and Qualifica Project
Publisher
Oxford University Press (OUP)