An oceanic fixed nitrogen sink exceeding 400 Tg N a<sup>−1</sup> vs the concept of homeostasis in the fixed-nitrogen inventory

Author:

Codispoti L. A.

Abstract

Abstract. Measurements of the N2 produced by denitrification, a better understanding of non-canonical pathways for N2 production such as the anammox reaction, better appreciation of the multiple environments in which denitrification can occur (e.g. brine pockets in ice, within particles outside of suboxic water, etc.) suggest that it is unlikely that the oceanic denitrification rate is less than 400 Tg N a−1. Because this sink term far exceeds present estimates for nitrogen fixation, the main source for oceanic fixed-N, there is a large apparent deficit (~200 Tg N a−1) in the oceanic fixed-N budget. The size of the deficit appears to conflict with apparent constraints of the atmospheric carbon dioxide and sedimentary δ15N records that suggest homeostasis during the Holocene. In addition, the oceanic nitrate/phosphate ratio tends to be close to the canonical Redfield biological uptake ratio of 16 (by N and P atoms) which can be interpreted to indicate the existence of a powerful feed-back mechanism that forces the system towards a balance. The main point of this paper is that one cannot solve this conundrum by reducing the oceanic sink term. To do so would violate an avalanche of recent data on oceanic denitrification. A solution to this problem may be as simple as an upwards revision of the oceanic nitrogen fixation rate, and it is noted that most direct estimates for this term have concentrated on nitrogen fixation by autotrophs in the photic zone, even though nitrogen fixing genes are widespread. Another simple explanation may be that we are simply no longer in the Holocene and one might expect to see temporary imbalances in the oceanic fixed-N budget as we transition from the Holocene to the Anthropocene in line with an apparent denitrification maximum during the Glacial-Holocene transition. Other possible full or partial explanations involve plausible changes in the oceanic nitrate/phosphate and N/C ratios, an oceanic phosphorus budget that may also be in deficit, and oscillations in the source and sink terms that are short enough to be averaged out in the atmospheric and geologic records, but which could, perhaps, last long enough to have significant impacts.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 266 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3