Annual and diurnal African biomass burning temporal dynamics

Author:

Roberts G.,Wooster M. J.,Lagoudakis E.

Abstract

Abstract. Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal resolution and a 3 km sampling distance (at the sub-satellite point) by the SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of African open biomass burning, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We find peak daily biomass combustion totals are 9 and 6 million tonnes per day in the Northern and Southern Hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots, indicating the importance of optimizing the fire pixel detection strategy performance. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 land cover types, and whilst differences are noted between land covers, the diurnal characteristics for a given land cover type are similar in both African hemispheres. We compare the FRP-derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree spatial scale. Fuel consumption estimates are found to be less than 2 kg/m2 for almost all land cover types, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 309 g/m2 appears reasonable. From mid-2008, geostationary FRP data of the type presented here will become available to interested users continuously and in near real-time from the EUMETSAT Land Surface Analysis Satellite Applications Facility (LandSAF), allowing the types of analysis presented in this paper to be undertaken on multi-year datasets where relationships between climate variables, active fires and fuel consumption can be further examined.

Publisher

Copernicus GmbH

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3