Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production

Author:

Wallin Marcus B.ORCID,Audet JoachimORCID,Peacock Mike,Sahlée Erik,Winterdahl MattiasORCID

Abstract

Abstract. Headwater streams are known to be hotspots for carbon dioxide (CO2) emissions to the atmosphere and are hence important components in landscape carbon balances. However, surprisingly little is known about stream CO2 dynamics and emissions in agricultural settings, a land use type that globally covers ca. 40 % of the continental area. Here we present hourly measured in situ stream CO2 concentration data from a 11.3 km2 temperate agricultural headwater catchment covering more than 1 year (in total 339 d excluding periods of ice and snow cover). The stream CO2 concentrations during the entire study period were generally high (median 3.44 mg C L−1, corresponding to partial pressures (pCO2) of 4778 µatm) but were also highly variable (IQR = 3.26 mg C L−1). The CO2 concentration dynamics covered a variety of different timescales from seasonal to hourly, with an interplay of hydrological and biological controls. The hydrological control was strong (although with both positive and negative influences dependent on season), and CO2 concentrations changed rapidly in response to rainfall and snowmelt events. However, during growing-season base flow and receding flow conditions, aquatic primary production seemed to control the stream CO2 dynamics, resulting in elevated diel patterns. During the dry summer period, rapid rewetting following precipitation events generated high CO2 pulses exceeding the overall median level of stream CO2 (up to 3 times higher) observed during the whole study period. This finding highlights the importance of stream intermittency and its effect on stream CO2 dynamics. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these considerable dynamics in large-scale extrapolations.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3