Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations

Author:

Bürki Charlotte,Reggente MatteoORCID,Dillner Ann M.,Hand Jenny L.ORCID,Shaw Stephanie L.,Takahama SatoshiORCID

Abstract

Abstract. The Fourier transform infrared (FTIR) spectra of fine particulate matter (PM2.5) contain many important absorption bands relevant for characterizing organic matter (OM) and obtaining organic matter to organic carbon (OM∕OC) ratios. However, extracting this information quantitatively – accounting for overlapping absorption bands and relating absorption to molar abundance – and furthermore relating abundances of functional groups to that of carbon atoms poses several challenges. In this work, we define a set of parameters that model these relationships and apply a probabilistic framework to identify values consistent with collocated field measurements of thermal–optical reflectance organic carbon (TOR OC). Parameter values are characterized for various sample types identified by cluster analysis of sample FTIR spectra, which are available for 17 sites in the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network (7 sites in 2011 and 10 additional sites in 2013). The cluster analysis appears to separate samples according to predominant influence by dust, residential wood burning, wildfire, urban sources, and biogenic aerosols. Functional groups calibrations of aliphatic CH, alcohol COH, carboxylic acid COOH, carboxylate COO, and amine NH2 combined together reproduce TOR OC concentrations with reasonable agreement (r=0.96 for 2474 samples) and provide OM∕OC values generally consistent with our current best estimate of ambient OC. The mean OM∕OC ratios corresponding to sample types determined from cluster analysis range between 1.4 and 2.0, though ratios for individual samples exhibit a larger range. Trends in OM∕OC for sites aggregated by region or year are compared with another regression approach for estimating OM∕OC ratios from a mass closure equation of the major chemical species contributing to PM fine mass. Differences in OM∕OC estimates are observed according to estimation method and are explained through the sample types determined from spectral profiles of the PM.

Funder

Electric Power Research Institute

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3