On the estimation of vertical air velocity and detection of atmospheric turbulence from the ascent rate of balloon soundings

Author:

Luce Hubert,Hashiguchi HiroyukiORCID

Abstract

Abstract. Vertical ascent rate VB of meteorological balloons is sometimes used for retrieving vertical air velocity W, an important parameter for meteorological applications, but at the cost of crude hypotheses on atmospheric turbulence and without the possibility of formally validating the models from concurrent measurements. From simultaneous radar and unmanned aerial vehicle (UAV) measurements of turbulent kinetic energy dissipation rates ε, we show that VB can be strongly affected by turbulence, even above the convective boundary layer. For “weak” turbulence (here ε≲10−4 m2 s−3), the fluctuations of VB were found to be fully consistent with W fluctuations measured by middle and upper atmosphere (MU) radar, indicating that an estimate of W can indeed be retrieved from VB if the free balloon lift is determined. In contrast, stronger turbulence intensity systematically implies an increase in VB, not associated with an increase in W according to radar data, very likely due to the decrease in the turbulence drag coefficient of the balloon. From the statistical analysis of data gathered from 376 balloons launched every 3 h at Bengkulu (Indonesia), positive VB disturbances, mainly observed in the troposphere, were found to be clearly associated with Ri≲0.25, usually indicative of turbulence, confirming the case studies. The analysis also revealed the superimposition of additional positive and negative disturbances for Ri≲0.25 likely due to Kelvin–Helmholtz waves and large-scale billows. From this experimental evidence, we conclude that the ascent rate of meteorological balloons, with the current performance of radiosondes in terms of altitude accuracy, can potentially be used for the detection of turbulence. The presence of turbulence complicates the estimation of W, and misinterpretations of VB fluctuations can be made if localized turbulence effects are ignored.

Funder

Research Institute for Sustainable Humanosphere, Kyoto University

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3