Shipborne MAX-DOAS measurements for validation of TROPOMI NO<sub>2</sub> products
-
Published:2020-03-30
Issue:3
Volume:13
Page:1413-1426
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Wang Ping, Piters Ankie, van Geffen JosORCID, Tuinder Olaf, Stammes Piet, Kinne Stefan
Abstract
Abstract. Tropospheric NO2 and stratospheric NO2 vertical column densities are important TROPOspheric Monitoring Instrument (TROPOMI) data products.
In order to validate the
TROPOMI NO2 products, KNMI Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments have measured NO2 on ship cruises over the Atlantic
and the Pacific oceans. The MAX-DOAS instruments have participated in five cruises on board RV Sonne (in 2017 and 2019)
and RV Maria S. Merian (in 2018). The MAX-DOAS measurements were acquired over 7 months and spanned
about 90∘ in latitude and 300∘ in longitude.
During the cruises aerosol measurements from Microtops sun photometers were also taken.
The MAX-DOAS measured stratospheric NO2 columns between
1.5×1015 and 3.5×1015 molec cm−2
and tropospheric NO2 up to 0.6×1015 molec cm−2.
The MAX-DOAS stratospheric NO2 vertical column densities have been compared with
TROPOMI stratospheric NO2 vertical column densities
and the stratospheric NO2 vertical column densities
simulated by the global chemistry Transport Model, version 5, Massively Parallel model (TM5-MP). Good correlation is found between the MAX-DOAS and TROPOMI and
TM5 stratospheric NO2 vertical column densities, with a correlation coefficient of 0.93 or larger. The TROPOMI and TM5
stratospheric NO2 vertical column densities are about 0.4×1015 molec cm−2 (19 %) higher than
the MAX-DOAS measurements.
The TROPOMI tropospheric NO2 also has good agreement with the MAX-DOAS measurements. The
tropospheric NO2 vertical column density is as low as 0.5×1015 molec cm−2 over remote oceans.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference48 articles.
1. Alliwell, S. R., Van Roozendael, M., Johnston, P. V., Richter, A.,
Wagner, T., Arlander, D. W., Burrows, J. P., Fish, D. J., Jones, R. L.,
Karlsen Tørnkvist, K., Lambert, J.-C., Pfeilsticker, K., and Pundt, I.:
Analysis for BrO in zenith-sky spectra – an intercomparison exercise
for analysis improvement,
J. Geophys. Res., 107, 4199, https://doi.org/10.1029/2001JD000329, 2002. a 2. Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H.,
Shettle, E. P.: AFGL Atmospheric Constituent Profiles, Technical report, Air
Force Geophysics Laboratory, Hanscom AFB, MA, aFGL–TR–86–0110, 1986. a 3. Bais, A., Dils, B., Gielen, C., Hendrick, F., Pinardi, G., Peters, E., Piters, A.,
Remmers, J., Richter, A., Wagner, T., Wang, S., and Wang, Y.:
Quality indicators on uncertainties and representativity of atmospheric reference data,
QA4ECV Report/Deliverable no. D3.9 version 1.0,
available at: http://www.qa4ecv.eu/sites/default/files/D3.9.pdf (last access: 23 March 2020), 2016. a 4. Behrens, L. K., Hilboll, A., Richter, A., Peters, E., Alvarado, L. M. A., Kalisz Hedegaard, A. B., Wittrock, F., Burrows, J. P., and Vrekoussis, M.: Detection of outflow of formaldehyde and glyoxal from the African continent to the Atlantic Ocean with a MAX-DOAS instrument, Atmos. Chem. Phys., 19, 10257–10278, https://doi.org/10.5194/acp-19-10257-2019, 2019. a, b, c, d 5. Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., and Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, 2016. a
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|