High-pressure homogenization of olivine-hosted CO<sub>2</sub>-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts

Author:

Buso Roxane,Laporte Didier,Schiavi Federica,Cluzel Nicolas,Fonquernie Claire

Abstract

Abstract. Experimental homogenization of olivine-hosted melt inclusions representative of near-primary basic and ultrabasic magmas is a powerful approach to investigate the nature of their source regions and the melting conditions in Earth's mantle. There is growing evidence that the total CO2 contents of olivine-hosted melt inclusions may reach values of the order of a single to several weight percent, especially in intraplate continental basalts. To be able to homogenize melt inclusions with such high CO2 contents, we developed a technique allowing for heat treating of the melt inclusions under hydrostatic pressures up to 3–4 GPa in a piston cylinder, using thick-walled Au80–Pd20 containers and molten NaCl as the surrounding medium for the inclusion-bearing olivines. We applied this technique to olivine phenocrysts from Thueyts basanite, Bas-Vivarais volcanic province, French Massif Central. Thueyts melt inclusions were chosen because of their high CO2 contents, as indicated by up to 1.19 wt % dissolved CO2 in the glasses and by the presence of shrinkage bubbles containing abundant carbonate microcrystals in addition to a CO2 fluid phase. The homogenization experiments were conducted at pressures of 1.5 to 2.5 GPa, temperatures of 1275 and 1300 ∘C, and run durations of 30 min. In all the melt inclusions treated at 2.5 GPa–1300 ∘C and half of those treated at 2 GPa–1300 ∘C, we were able to completely homogenize the inclusions, as indicated by the disappearance of the starting bubbles, and we obtained total CO2 contents ranging from 3.2 wt % to 4.3 wt % (3.7 wt % on average). In all the other melt inclusions (equilibrated at 1.5 or 2 GPa and 1300 ∘C or at 2.5 GPa–1275 ∘C), we obtained lower and more variable total CO2 contents (1.4 wt % to 2.9 wt %). In the inclusions with the highest total CO2 contents, the size of the shrinkage bubble was in most cases small (<5 vol %) to medium (<10 vol %): this is a strong argument in favor of an origin of these melt inclusions by homogeneous entrapment of very CO2-rich basanitic liquids (∼ 4 wt %) at pressures of 2 to 2.5 GPa. The lower total CO2 contents measured in some inclusions could reflect a natural variability in the initial CO2 contents, due for instance to melt entrapment at different pressures, or CO2 loss by decrepitation. An alternative scenario is heterogeneous entrapment of basanitic liquid plus dense CO2 fluid at lower pressures but still at least on the order of 1 GPa as indicated by dissolved CO2 contents up to 1.19 wt % in the glasses of unheated melt inclusions. Whatever the scenario, the basanites from the Bas-Vivarais volcanic province were generated in a mantle environment extremely rich in carbon dioxide.

Funder

Région Auvergne-Rhône-Alpes

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3