Comparing atmospheric transport models for future regional inversions over Europe. Part 1: Mapping the CO<sub>2</sub> atmospheric signals

Author:

Geels C.,Gloor M.,Ciais P.,Bousquet P.,Peylin P.,Vermeulen A. T.,Dargaville R.,Aalto T.,Brandt J.,Christensen J. H.,Frohn L. M.,Haszpra L.,Karstens U.,Rödenbeck C.,Ramonet M.,Carboni G.,Santaguida R.

Abstract

Abstract. The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain in-situ atmospheric stations as well as flask samples sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are generally underpredicted. This is a reflection of the different mixing regimes during day and night combined with different vertical resolution between models. In line with this finding, the agreement among models is increased when sampling in the afternoon hours only and when sampling the mixed portion of the PBL, which amounts to sampling at a few hundred meters above ground. Main recommendations resulting from the study for constraining land carbon sources and sinks using high-resolution concentration data and state-of-the art transport models are therefore: 1) low altitude stations are preferable over high altitude stations as these locations are difficult to represent in state-of-the art models, 2) at low altitude stations only afternoon values can be represented sufficiently well to be used to constrain large-scale sources and sinks in combination with transport models, 3) even when using only afternoon values it is clear that data sampled several hundred meters above ground can be represented substantially more robust in models than surface station records, and finally 4) traditional large scale transport models seem not sufficient to resolve CO2 distributions over regions of the size of for example Spain and thus seem too coarse for interpretation of continental data.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3