An improved electrical and thermal model of a microbolometer for electronic circuit simulation

Author:

Würfel D.,Vogt H.

Abstract

Abstract. The need for uncooled infrared focal plane arrays (IRFPA) for imaging systems has increased since the beginning of the nineties. Examples for the application of IRFPAs are thermography, pedestrian detection for automotives, fire fighting, and infrared spectroscopy. It is very important to have a correct electro-optical model for the simulation of the microbolometer during the development of the readout integrated circuit (ROIC) used for IRFPAs. The microbolometer as the sensing element absorbs infrared radiation which leads to a change of its temperature due to a very good thermal insulation. In conjunction with a high temperature coefficient of resistance (TCR) of the sensing material (typical vanadium oxide or amorphous silicon) this temperature change results in a change of the electrical resistance. During readout, electrical power is dissipated in the microbolometer, which increases the temperature continuously. The standard model for the electro-optical simulation of a microbolometer includes the radiation emitted by an observed blackbody, radiation emitted by the substrate, radiation emitted by the microbolometer itself to the surrounding, a heat loss through the legs which connect the microbolometer electrically and mechanically to the substrate, and the electrical power dissipation during readout of the microbolometer (Wood, 1997). The improved model presented in this paper takes a closer look on additional radiation effects in a real IR camera system, for example the radiation emitted by the casing and the lens. The proposed model will consider that some parts of the radiation that is reflected from the casing and the substrate is also absorbed by the microbolometer. Finally, the proposed model will include that some fraction of the radiation is transmitted through the microbolometer at first and then absorbed after the reflection at the surface of the substrate. Compared to the standard model temperature and resistance of the microbolometer can be modelled more realistically when these higher order effects are taken into account. A Verilog-A model for electronic circuit simulations is developed based on the improved thermal model of the microbolometer. Finally, a simulation result of a simple circuit is presented.

Publisher

Copernicus GmbH

Reference4 articles.

1. Weiler, D., Ruß, M., Würfel, D., Lerch, R., Yang, P., Bauer, J., Kropelnicki, P., Heß, J., and Vogt, H.: Improvements of a Digital 25$\\mu $m Pixel-Pitch Uncooled Amorphous Silicon TEC-less VGA IRFPA with Massively Parallel Sigma-Delta-ADC Readout; Proc. of SPIE, Vol. 8012, 80121F-1-7, 2011.

2. Wood, R. A.: Monolithic Silicon Microbolometer Arrays; Uncooled Infrared Imaging Arrays and Systems, edited by: Kruse, P. and Skatrud, D., Semiconductors and Semimetals, 47, 45–121, Academic Press, 1997.

3. ~Würfel, D.,Ruß, M.,~Lerch, R.,~Weiler, D.,~Yang, P., and~Vogt, H.: An Uncooled VGA-IRFPA with Novel Readout Architecture; Adv. Radio Sci., 9, 107-110, 2011.

4. Würfel, D.: Rauscharme Ausleseschaltungen für die Infrarot-Sensorik; Dissertation, Universität Duisburg-Essen, 2010.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3