A field evidence model: how to predict transport in heterogeneous aquifers at low investigation level

Author:

Zech AlrauneORCID,Dietrich Peter,Attinger Sabine,Teutsch Georg

Abstract

Abstract. Aquifer heterogeneity in combination with data scarcity is a major challenge for reliable solute transport prediction. Velocity fluctuations cause non-regular plume shapes with potentially long-tailing and/or fast-travelling mass fractions. High monitoring cost and a shortage of simple concepts have limited the incorporation of heterogeneity into many field transport models up to now. We present an easily applicable hierarchical conceptualization strategy for hydraulic conductivity to integrate aquifer heterogeneity into quantitative flow and transport modelling. The modular approach combines large-scale deterministic structures with random substructures. Depending on the modelling aim, the required structural complexity can be adapted. The same holds for the amount of monitoring data. The conductivity model is constructed step-wise following field evidence from observations, seeking a balance between model complexity and available field data. The starting point is a structure of deterministic blocks, derived from head profiles and pumping tests. Then, subscale heterogeneity in the form of random binary inclusions is introduced to each block. Structural parameters can be determined, for example, from flowmeter measurements or hydraulic profiling. As proof of concept, we implemented a predictive transport model for the heterogeneous MADE site. The proposed hierarchical aquifer structure reproduces the plume development of the MADE-1 transport experiment without calibration. Thus, classical advection–dispersion equation (ADE) models are able to describe highly skewed tracer plumes by incorporating deterministic contrasts and effects of connectivity in a stochastic way without using uni-modal heterogeneity models with high variances. The reliance of the conceptual model on few observations makes it appealing for a goal-oriented site-specific transport analysis of less well investigated heterogeneous sites.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3