Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe

Author:

Ma YuelingORCID,Montzka CarstenORCID,Bayat BagherORCID,Kollet Stefan

Abstract

Abstract. Many European countries rely on groundwater for public and industrial water supply. Due to a scarcity of near-real-time water table depth (wtd) observations, establishing a spatially consistent groundwater monitoring system at the continental scale is a challenge. Hence, it is necessary to develop alternative methods for estimating wtd anomalies (wtda) using other hydrometeorological observations routinely available near real time. In this work, we explore the potential of Long Short-Term Memory (LSTM) networks for producing monthly wtda using monthly precipitation anomalies (pra) as input. LSTM networks are a special category of artificial neural networks that are useful for detecting a long-term dependency within sequences, in our case time series, which is expected in the relationship between pra and wtda. In the proposed methodology, spatiotemporally continuous data were obtained from daily terrestrial simulations of the Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed the TSMP-G2A data set), with a spatial resolution of 0.11∘, ranging from the years 1996 to 2016. The data were separated into a training set (1996–2012), a validation set (2013–2014), and a test set (2015–2016) to establish local networks at selected pixels across Europe. The modeled wtda maps from LSTM networks agreed well with TSMP-G2A wtda maps on spatially distributed dry and wet events, with 2003 and 2015 constituting drought years over Europe. Moreover, we categorized the test performances of the networks based on intervals of yearly averaged wtd, evapotranspiration (ET), soil moisture (θ), snow water equivalent (Sw), soil type (St), and dominant plant functional type (PFT). Superior test performance was found at the pixels with wtd < 3 m, ET > 200 mm, θ>0.15 m3 m−3, and Sw<10 mm, revealing a significant impact of the local factors on the ability of the networks to process information. Furthermore, results of the cross-wavelet transform (XWT) showed a change in the temporal pattern between TSMP-G2A pra and wtda at some selected pixels, which can be a reason for undesired network behavior. Our results demonstrate that LSTM networks are useful for producing high-quality wtda based on other hydrometeorological data measured and predicted at large scales, such as pra. This contribution may facilitate the establishment of an effective groundwater monitoring system over Europe that is relevant to water management.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3