Robustness of a parsimonious subsurface drainage model at the French national scale

Author:

Jeantet AlexisORCID,Henine Hocine,Chaumont Cédric,Collet Lila,Thirel GuillaumeORCID,Tournebize JulienORCID

Abstract

Abstract. Drainage systems are currently implemented on agricultural plots subjected to temporary or permanent waterlogging issues. Drained plots account for 9 % of all arable soils in France. As such, the need for accurate hydrological modeling is crucial, especially in an unstable future context affected by climate change. The aim of this paper is to assess the capacity of the SIDRA-RU hydrological drainage model to represent the variability in pedoclimatic conditions within French metropolitan areas and to demonstrate the utility of this model as a long-term management tool. The model is initially calibrated using the KGE′ criterion as an objective function (OF) on a large and unique database encompassing 22 plots spread across France and classified according to three main soil textures (silty, silty–clay, and clayey). The performance of SIDRA-RU is evaluated by monitoring both the set of KGE′ calibration values and the quality of simulations on each plot with respect to high and low discharges, as well as the annual drained water balance. Next, the temporal robustness of the model is assessed by conducting, on selected plots, the split-sample test capable of satisfying the data requirements. Results show that the SIDRA-RU model accurately simulates drainage discharge, especially on silty soils. The performance on clayey soils is slightly weaker than that on silty soils yet remains acceptable. Similarly, the split-sample test indicates that SIDRA-RU is temporally robust on all three soil textures. Consequently, the SIDRA-RU model closely replicates the diversity of French drained soil and could be used for its long-term management potential.

Funder

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference127 articles.

1. Abd-Elaty, I., Sallam, G. A. H., Straface, S., and Scozzari, A.: Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta, Sci. Total Environ., 672, 283–295, https://doi.org/10.1016/j.scitotenv.2019.03.483, 2019.

2. Adriaanse, P., Allen, R., Gouy, V., Hollis, J., Hosang, J., Jarvis, N., Jarvis, T., Klein, M., Layton, R., and Linders, J.: Surface water models and EU registration of plant protection products, IRSTEA, available at: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/docs/sw_en_6476VI96_24Feb1997.pdf (last access: 7 October 2021), 1996.

3. Anderson, M. P. and Woessner, W. W.: Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, San Diego, CA, USA, 1992.

4. Anon: RGA 2010 – Agreste, available at: http://recensement-agricole.agriculture.gouv.fr/ (last access: 25 August 2020), 2010.

5. Armstrong, A. C., Rands, J. G., and Castle, D. A.: Drainage benefits: Watertable control, workablility and crop yields, Agr. Water Manage., 14, 43–52, https://doi.org/10.1016/0378-3774(88)90059-5, 1988.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3