Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains

Author:

Zhao Haidong,Sassenrath Gretchen F.,Kirkham Mary Beth,Wan Nenghan,Lin Xiaomao

Abstract

Abstract. Soil temperature (Ts) plays a critical role in land–surface hydrological processes and agricultural ecosystems. However, soil temperature data are limited in both temporal and spatial scales due to the configuration of early weather station networks in the USA Great Plains. Here, we examined an empirical model (EM02) for predicting daily soil temperature (Ts) at the 10 cm depth across Nebraska, Kansas, Oklahoma, and parts of Texas that comprise the USA winter wheat belt. An improved empirical model (iEM02) was developed and calibrated using available historical climate data prior to 2015 from 87 weather stations. The calibrated models were then evaluated independently, using the latest 5-year observations from 2015 to 2019. Our results suggested that the iEM02 had, on average, an improved root mean square error (RMSE) of 0.6 ∘C for 87 stations when compared to the original EM02 model. Specifically, after incorporating the changes in soil moisture and daily snow depth, the improved model was 50 % more accurate, as demonstrated by the decrease in RMSE. We conclude that, in the USA Great Plains, the iEM02 model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur. Both seasonal and spatial improvements made in the improved model suggest that it can provide a daily soil temperature modeling tool that overcomes the deficiencies of soil temperature data used in assessments of climatic changes, hydrological modeling, and winter wheat production in the USA Great Plains.

Funder

U.S. Department of Agriculture

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3