Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective

Author:

Astagneau Paul C.ORCID,Thirel GuillaumeORCID,Delaigue OlivierORCID,Guillaume Joseph H. A.,Parajka JurajORCID,Brauer Claudia C.ORCID,Viglione AlbertoORCID,Buytaert WouterORCID,Beven Keith J.ORCID

Abstract

Abstract. Following the rise of R as a scientific programming language, the increasing requirement for more transferable research and the growth of data availability in hydrology, R packages containing hydrological models are becoming more and more available as an open-source resource to hydrologists. Corresponding to the core of the hydrological studies workflow, their value is increasingly meaningful regarding the reliability of methods and results. Despite package and model distinctiveness, no study has ever provided a comparison of R packages for conceptual rainfall–runoff modelling from a user perspective by contrasting their philosophy, model characteristics and ease of use. We have selected eight packages based on our ability to consistently run their models on simple hydrology modelling examples. We have uniformly analysed the exact structure of seven of the hydrological models integrated into these R packages in terms of conceptual storages and fluxes, spatial discretisation, data requirements and output provided. The analysis showed that very different modelling choices are associated with these packages, which emphasises various hydrological concepts. These specificities are not always sufficiently well explained by the package documentation. Therefore a synthesis of the package functionalities was performed from a user perspective. This synthesis helps to inform the selection of which packages could/should be used depending on the problem at hand. In this regard, the technical features, documentation, R implementations and computational times were investigated. Moreover, by providing a framework for package comparison, this study is a step forward towards supporting more transferable and reusable methods and results for hydrological modelling in R.

Funder

University of Sydney

Ministère de la Transition écologique et Solidaire

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference128 articles.

1. Anderson, E. A.: A point energy and mass balance model of a snow cover, vol. 19, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Hydrology, Silver Spring, US, 1976. a

2. Anderson, E. A.: Snow accumulation and ablation model SNOW-17, NOAA’s National Weather Service Hydrology Laboratory NWSRFS user manual, 61 pp., Silver Spring, US, 2006. a, b

3. Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions ”Crash tests for a standardized evaluation of hydrological models”, Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009. a

4. Andrews, F. T. and Guillaume, J. H.: hydromad: Hydrological Model Assessment and Development, available at: http://hydromad.catchment.org/ (last access: 6 July 2021), R package version 0.9-26, 2018. a, b, c, d

5. Andrews, F. T., Croke, B. F. W., and Jakeman, A. J.: An open software environment for hydrological model assessment and development, Environ. Modell. Softw., 26, 1171–1185, https://doi.org/10.1016/j.envsoft.2011.04.006, 2011. a, b

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3