Ensemble streamflow data assimilation using WRF-Hydro and DART: novel localization and inflation techniques applied to Hurricane Florence flooding
-
Published:2021-09-29
Issue:9
Volume:25
Page:5315-5336
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
El Gharamti Mohamad, McCreight James L.ORCID, Noh Seong Jin, Hoar Timothy J.ORCID, RafieeiNasab Arezoo, Johnson Benjamin K.
Abstract
Abstract. Predicting major floods during extreme rainfall events remains an important challenge. Rapid changes in flows over short timescales, combined with multiple sources of model error, makes it difficult to accurately simulate intense floods. This study presents a general data assimilation framework that aims to improve flood predictions in channel routing models. Hurricane Florence, which caused catastrophic flooding and damages in the Carolinas in September 2018, is used as a case study. The National Water Model (NWM) configuration of the WRF-Hydro modeling framework is interfaced with the Data Assimilation Research Testbed (DART) to produce ensemble streamflow forecasts and analyses. Instantaneous streamflow observations from 107 United States Geological Survey (USGS) gauges are assimilated for a period of 1 month. The data assimilation (DA) system developed in this paper explores two novel contributions, namely (1) along-the-stream (ATS) covariance localization and (2) spatially and temporally varying adaptive covariance inflation. ATS localization aims to mitigate not only spurious correlations, due to limited ensemble size, but also physically incorrect correlations between unconnected and indirectly connected state variables in the river network. We demonstrate that ATS localization provides improved information propagation during the model update. Adaptive prior inflation is used to tackle errors in the prior, including large model biases which often occur in flooding situations. Analysis errors incurred during the update are addressed using posterior inflation. Results show that ATS localization is a crucial ingredient of our hydrologic DA system, providing at least 40 % more accurate (root mean square error) streamflow estimates than regular, Euclidean distance-based localization. An assessment of hydrographs indicates that adaptive inflation is extremely useful and perhaps indispensable for improving the forecast skill during flooding events with significant model errors. We argue that adaptive prior inflation is able to serve as a vigorous bias correction scheme which varies both spatially and temporally. Major improvements over the model's severely underestimated streamflow estimates are suggested along the Pee Dee River in South Carolina, and many other locations in the domain, where inflation is able to avoid filter divergence and, thereby, assimilate significantly more observations.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference67 articles.
1. Abbaszadeh, P., Moradkhani, H., and Yan, H.: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov chain Monte Carlo, Adv. Water Resour., 111, 192–204, 2018. a, b, c 2. Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a, b 3. Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003. a, b 4. Anderson, J. L.: A non-Gaussian ensemble filter update for data assimilation, Mon. Weather Rev., 138, 4186–4198, 2010. a 5. Ashman, M. S., Socolow, R. S., Zanca, J. L., and Bonito, M. V.: One Hundred Years of Streamflow Measurements in Massachusetts and Rhode Island, US Department of the Interior, US Geological Survey, 2004. a
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|