Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
-
Published:2021-04-21
Issue:4
Volume:25
Page:2169-2186
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Snelgrove Jenna R., Buttle James M., Kohn Matthew J., Tetzlaff DörtheORCID
Abstract
Abstract. Plant–soil water isotopic dynamics in northern forests have been understudied relative to other forest types; nevertheless, such information can provide insight into how such forests may respond to hydroclimatic change. This study examines the co-evolution of xylem water and soil water stable isotopic compositions in a northern mixed forest in Ontario, Canada. Gross precipitation, bulk soil water and xylem water were sampled from pre-leaf out to post-senescence in 2016 for eastern white cedar, eastern hemlock, red oak and eastern white pine. Near-bole soil water contents and mobile soil water isotopic compositions were measured for the last three species. Mobile soil water did not deviate significantly from the local meteoric water line (LMWL). In contrast, near-surface bulk soil water showed significant evaporative enrichment relative to the LMWL from pre-leaf out to peak leaf out under all tree canopies, while xylem water was significantly depleted in 18O and particularly 2H relative to bulk soil water throughout the growing season. Inter-species differences in deviation of xylem water from the LMWL and their temporal changes emerged during the growing season, with coniferous species xylem water becoming isotopically enriched, while that of red oak became more depleted in 2H and 18O. These divergences occurred despite thin soil cover (generally <0.5 m depth to bedrock) which would constrain inter-species differences in tree rooting depths in this landscape. Isotopic fractionation at the tree root and fractionation of xylem water via evaporation through the tree bark are among the most plausible potential explanations for deviations between xylem and soil water isotopic compositions. Differences in the timing and intensity of water use between deciduous and coniferous trees may account for inter-specific variations in xylem water isotopic composition and its temporal evolution during the growing season in this northern forest landscape.
Funder
Natural Sciences and Engineering Research Council of Canada FP7 Ideas: European Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference72 articles.
1. Allen, R. G., Periera, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO
Irrigation and Drainage Paper 56, FAO, Rome, 1998. 2. Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. 3. Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., and Louvat, D.:
Isotope effects accompanying vacuum extraction of soil water for stable
isotope analyses, J. Hydrol., 168, 159–171, 1995. 4. Barbeta, A., Mejía-Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., and
Peñuelas, J.: The combined effects of a long-term experimental drought
and an extreme drought on the use of plant-water sources in a Mediterranean
forest, Global Change Biol., 21, 1213–1225, 2015. 5. Barbeta, A., Gimeno, T. E., Clavé, L., Fréjaville, B., Jones, S. P.,
Delvigne, C., Wingate, L., and Ogée, J.: An explanation for the isotopic
offset between soil and stem water in a temperate tree species, New
Phytolol., 227, 766–779, 2020.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|