Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
-
Published:2023-10-18
Issue:5
Volume:35
Page:845-871
-
ISSN:1617-4011
-
Container-title:European Journal of Mineralogy
-
language:en
-
Short-container-title:Eur. J. Mineral.
Author:
Galán GumerORCID, Gallastegui Gloria, Cuesta Andrés, Corretgé Guillermo, Suárez Ofelia, González-Menéndez Luis
Abstract
Abstract. Post-collisional Mg–K-rich mafic rocks with associated granitoids appear regularly in most orogens. They are relevant to evaluate the mantle role in the genesis of granitoids and thereby of the continental crust itself. The most characteristic Mg–K mafic rocks in the Variscan Iberian Massif are appinites and vaugnerites. Two examples with associated granitoids from NW Iberia have been compared to assess their mantle and crustal sources and the magmatic processes involved in their formation. Related granitoids are tonalites, granodiorites and monzonitic granites. Available whole-rock major and trace element compositions, as well as Sr and Nd isotopes, were used for this comparison, along with new Sr–Nd isotopic data. The appinite–granitoid association is calc–alkalic, whereas the vaugneritic one is calc–alkalic transitional to alkali–calcic. Vaugnerites are more enriched in Mg and K, compatible and incompatible trace elements and display more fractionated rare-earth element (REE) patterns than appinites. Associated granitoids provide similar differences. Appinites and vaugnerites have Sr and Nd crustal isotopic signatures resulting from partial melting of a different subduction-type metasomatised mantle: amphibole spinel lherzolites for appinites and more refractory and deeper amphibole phlogopite ± garnet peridotites for vaugnerites. Further interaction of these basic melts with coeval granitoids occurred during their ascent and emplacement. The monzonitic granites derived from partial melting of metaigneous acid granulites, without discarding contribution of metasediments and/or an increasing role of biotite incongruent melting in those related to vaugnerites. An assimilation with fractional crystallisation process between appinite magmas and granulites could explain tonalites and granodiorites. This process was not confirmed for granodiorites related to vaugnerites.
Funder
Gobierno del Principado de Asturias Ministerio de Ciencia e Innovación
Publisher
Copernicus GmbH
Subject
Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health
Reference110 articles.
1. Antonicelli, M., Tribuzio, R., Liu, T., and Wu, F.-Y.: Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone), Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, 2020. 2. Atherton, M. P. and Ghani, A. A.: Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Lithos, 62, 65–85, https://doi.org/10.1016/S0024-4937(02)00111-1, 2002. 3. Bailey, E. B. and Maufe, H. B.: The Geology of Ben Nevis and Glen Coe and the Surrounding Country (Explanation of Sheet 53), Memoirs of the Geological Survey, Scotland, 53, 167 pp., 1916. 4. Baxter, S. and Feely, M.: Magma mixing and mingling in granitoids: examples from the Galway Granite, Connemara, Ireland, Miner. Petrol., 76, 63–74, https://doi.org/10.1007/s007100200032, 2002. 5. Bea, F., Montero, P., and Molina, J. F.: Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: a Model for the Generation of Variscan Batholith in Iberia, J. Geol., 107, 399–419, https://doi.org/10.1086/314356, 1999.
|
|