Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions
-
Published:2017-02-09
Issue:1
Volume:2
Page:55-76
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Bartl Jan, Sætran LarsORCID
Abstract
Abstract. This is a summary of the results of the fourth blind test workshop that was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at the wind tunnel of the Norwegian University of Science and Technology (NTNU). A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within computational fluid dynamics (CFD) were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development with nine rotor diameters downstream at three different turbulent inflow conditions. Aside from a spatially uniform inflow field of very low-turbulence intensity (TI = 0.23 %) and high-turbulence intensity (TI = 10.0 %), the turbines are exposed to a grid-generated highly turbulent shear flow (TI = 10.1 %).Five different research groups contributed their predictions using a variety of simulation models, ranging from fully resolved Reynolds-averaged Navier–Stokes (RANS) models to large eddy simulations (LESs). For the three inlet conditions, the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. Prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (improved delayed detached eddy simulation) model, however, consistently manage to provide fairly accurate predictions of the wake turbulence.
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference43 articles.
1. Adaramola, M. S. and Krogstad, P. Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, https://doi.org/10.1016/j.renene.2011.01.024, 2011. 2. Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. 3. Aksnes, N. Y.: Performance Characteristics of the NREL S826 Airfoil – An assessment of Re-independency and effect of inflow turbulence, Master's thesis NTNU, 2015. 4. Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009. 5. Bartl, J. and Sætran, L.: Experimental testing of axial induction based control strategies for wake control and wind farm optimization, J. Phys. Conf. Ser. B, Wind, wakes, turbulence and wind farms, 753, 032035, https://doi.org/10.1088/1742-6596/753/3/032035, 2016.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|