Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon
-
Published:2017-10-06
Issue:19
Volume:14
Page:4423-4433
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Zhu Yafei, McCowan Andrew, Cook Perran L. M.ORCID
Abstract
Abstract. The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Funder
Centre of Excellence for Environmental Decisions, Australian Research Council
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference57 articles.
1. Beaulieu, S. E.: Resuspension of phytodetritus from the sea floor: A laboratory flume study, Limnol. Oceanogr., 48, 1235–1244, 2003. 2. Boesch, D. F., Brinsfield, R. B., and Magnien, R. E.: Chesapeake bay eutrophication, J. Environ. Qual., 30, 303–320, 2001. 3. Boesch, D. F., Boynton, W. R., Crowder, L. B., Diaz, R. J., Howarth, R. W., Mee, L. D., Nixon, S. W., Rabalais, N. N., Rosenberg, R., and Sanders, J. G.: Nutrient enrichment drives Gulf of Mexico hypoxia, Eos, Transactions American Geophysical Union, 90, 117–118, 2009. 4. Capet, A., Beckers, J.-M., and Grégoire, M.: Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?, Biogeosciences, 10, 3943–3962, https://doi.org/10.5194/bg-10-3943-2013, 2013. 5. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287–1297, https://doi.org/10.5194/bg-13-1287-2016, 2016.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|