Evaporation over a glacial lake in Antarctica

Author:

Shevnina ElenaORCID,Potes MiguelORCID,Vihma TimoORCID,Naakka TuomasORCID,Dhote Pankaj RamjiORCID,Thakur Praveen KumarORCID

Abstract

Abstract. The study provides estimates of summertime evaporation over a glacial lake located in the Schirmacher oasis, Dronning Maud Land, East Antarctica. Lake Zub (alternately named Lake Priyadarshini and referred to throughout as Lake Zub/Priyadarshini) is the second-largest lake in the oasis, and its maximum depth is 6 m. The lake is also among the warmest glacial lakes in the oasis, and it is free of ice during almost 2 summer months. The summertime evaporation over the ice-free lake was measured using the eddy covariance method and estimated on the basis of five indirect methods (bulk-aerodynamic method and four combination equations). We used meteorological and hydrological measurements collected during a field experiment carried out in 2018. The eddy covariance method was considered the most accurate, and the evaporation was estimated to be 114 mm for the period from 1 January to 7 February 2018 (38 d) on the basis of this method. The average daily evaporation was 3.0 mm d−1 in January 2018. During the experiment period, the largest changes in daily evaporation were driven by synoptic-scale atmospheric processes rather than local katabatic winds. The bulk-aerodynamic method suggests the average daily evaporation is 2.0 mm d−1, which is 32 % less than the results based on the eddy covariance method. The bulk-aerodynamic method is much better in producing the day-to-day variations in evaporation compared to the combination equations. All selected combination equations underestimated the evaporation over the lake by 40 %–72 %. The scope of the uncertainties inherent in the indirect methods does not allow us to apply them to estimate the daily evaporation over Lake Zub/Priyadarshini. We suggested a new combination equation to evaluate the summertime evaporation over the lake's surface using meteorological observations from the nearest site. The performance of the new equation is better than the performance of the indirect methods considered. With this equation, the evaporation over the period of the experiment was 124 mm, which is only 9 % larger than the result according to the eddy covariance method.

Funder

Fundação para a Ciência e a Tecnologia

European Commission

Academy of Finland

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference107 articles.

1. Agustsson, H. and Olafsson, H.: Mean gust factors in complex terrain, Meteorol. Z., 13, 149–155, 2004.

2. Antarctic station catalog: Council of Managers of National Antarctic Programs (COMNAP), Christchurch, New Zealand, 86 pp., 2017.

3. Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020.

4. Asthana, R., Shrivastava, P. K., Srivastava, H. B., Swain, A. K., Beg, M. J., and Dharwadkar, A.: Role of lithology, weathering and precipitation on water chemistry of lakes from Larsemann Hills and Schirmacher Oasis of East Antarctica, Adv. Polar Sci., 30, 35–51, https://doi.org/10.13679/j.advps.2019.1.00035, 2019.

5. Aubinet M., Vesala, T., Papale, D. (Eds): Eddy Covariance: A Practical Guide to Measurement and Data Analysis, ISBN 978-94-007-2350-4e-ISBN, https://doi.org/10.1007/978-94-007-2351-1, 2012.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3