Impact of phosphorus control measures on in-river phosphorus retention associated with point source pollution

Author:

Demars B. O. L.,Harper D. M.,Pitt J.-A.,Slaughter R.

Abstract

Abstract. In-river phosphorus retention alters the quantity and timings of phosphorus delivery to downstream aquatic systems. Many intensive studies of in-river phosphorus retention have been carried out but generally on a short time scale (2-4 years). In this paper, monthly water quality data, collected by the Environment Agency of England and Wales over 12 years (1990-2001), were used to model daily phosphorus fluxes and monthly in-river phosphorus retention in the lowland calcareous River Wensum, Norfolk, UK. The effectiveness of phosphorus stripping at two major sewage treatment works was quantified over different hydrological conditions. The model explained 78% and 88% of the observed variance before and after phosphorus control, respectively. During relatively dry years, there was no net export of phosphorus from the catchment. High retention of phosphorus occurred, particularly during the summer months, which was not compensated for, by subsequent higher flow events. The critical discharge (Q) above which net remobilisation would occur, was only reached during few, high flow events Q25-Q13. Phosphorus removal from the effluent at two major STWs (Sewage Treatment Works) reduced the phosphorus catchment mass balance variability by 20-24% under the Q99-Q1. range of flow conditions. Although the absorbing capacity of the catchment against human impact was remarkable, further phosphorus remedial strategies will be necessary to prevent downstream risks of eutrophication occuring independently of the unpredictable variability in weather conditions.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3